
COMP 200 & 130 exam 2, Spring 2012

Instructions:

 Allowed resources: You can read your notes and assignments, everything posted on the

course web site and OWL-Space area, everything directly linked from the course web site

and OWL-Space area. You can use a computer for reading and writing the exam, using the

Python interpreter and any editor, using a browser for the previously mentioned materials,

and using a calculator.

 Files:

o exam2.py: COMP 200 and COMP 130 students should edit this for problems 1-6.

o exam2_130.py: COMP 130 students should edit this for problems 7-8.

o This text file: Use for instructions only. Do not edit.

 Time limit:

o COMP 200 students are allowed three and a half contiguous hours.

o COMP 130 students are allowed five contiguous hours.

The textual length of the problems may seem long, but that’s just because we have

attempted to be very clear on what each problem is asking.

 Asking questions: Times will be posted online when the instructors will be available for

questions. You can take the exam at any time before the due time, but you will likely not

get quick responses to any questions during any non-posted time.

1. COMP 200 & COMP 130 (12 points)

When writing a program, you need to pick a data structure. Either a list or tuple could be

appropriate for your problem. Briefly describe how you would choose between the two

options.

2. COMP 200 & COMP 130 (13 points)

If you create a Markov chain from a short input text, “riffs” generated from it tend to be very

similar to the original text. However, if you create a Markov chain from a long input text, riffs

are less similar. Explain why.

3. COMP 200 & COMP 130 (20 points total)

Assume the Rice directory is stored as a dictionary mapping a building name to the directory for

a single building. In turn, a building directory is a dictionary mapping a room to a single name.

For the sake of simplicity, we are assuming each office or college room is occupied by a single

person. However, this does allow for someone to have multiple addresses, for example, a

college master has both a residential and work address on campus.

For example,

directory = {"Duncan Hall" : {3093 : "John Greiner",

 3102 : "Stephen Wong",

 3114 : "Joe Warren",

 3080 : "Joe Warren"},

 "Keck Hall" : {129 : "Rob Griffin",

 109 : "Ann Saterbak"},

 "Hanszen College" : {"House" : "Rob Griffin"}}

a. (10 points) Write a function lookupBuilding(buildingDir,name) that takes a

building directory and returns a list of the rooms for that name.

b. (10 points) Write a function lookup(dir,name) that takes a directory and a name.

It returns a list of the building-room pairs for that name.

Examples:

 lookupBuilding(directory["Duncan Hall"], "Joe Warren") returns

[3114,3080].

 lookupBuilding(directory["Keck Hall"], "Rob Griffin") returns

[129].

 lookup(directory, "Joe Warren") returns [("Duncan Hall",3114),

("Duncan Hall",3080)].

 lookup(directory, "Rob Griffin") returns [("Keck Hall",129),

("Hanszen College","House")]".

4. COMP 200 & COMP 130 (20 points)

Background: The Python function re.findall(regexp,str) returns a list of all non-

overlapping occurrences of the pattern in the string. For example, re.findall("a[0-

9]a","a1a2a3a4a") returns ["a1a","a3a"]. This list does not include "a2a" because

it overlaps "a1a", and it doesn’t include "a4a" because it overlaps "a3a".

Write a function findallOverlapping(regexp,str) that returns a list of all possibly-

overlapping occurrences of the pattern in the string.

Examples:

 findallOverlapping("a[0-9]a","a1a2a3a4a") returns ["a1a",

"a2a" , "a3a", "a4a"].

 findallOverlapping("a*","aaaabaab") returns

["aaaa","aaa","aa","a","","aa","a",""], because it finds occurrences

like this:

input text: aaaabaab

occurrences: aaaa

 aaa

 aa

 a

 _ Meaning the empty string.

 aa

 a

 _ Meaning the empty string.

 findallOverlapping("a+b","aaaabaab") returns

["aaaab","aaab","aab","ab","aab","ab"], because it finds occurrences

like this:

input text: aaaabaab

occurrences: aaaab

 aaab

 aab

 ab

 aab

 ab

Hints:

 Do not do anything with the regular expression other than pass it to one or more

functions in the re library.

 Functions in re return a MatchObject, m, when they find a matching substring. Using

m.group() (Note: no arguments!) then returns the matching substring. E.g.,

m = re.somefunction(regexp,somestring)

if m:

 matchedString = m.group()

Resource link: The re library, including specifically MatchObject.group().

5. COMP 200 & COMP 130 (15 points)

Background: When you load a web page, sometimes the network can be very slow. To speed

up future access, the browser caches the web page, so that it can simply load it from your

computer disk drive, rather than loading it from the network again. I.e., it stores the idea that

the requested web address maps to this web page. This approach only works with web pages

that don’t change.

In place of loading a web page, we have provided a function f(x) that returns some value. We

will simply assume that this function is slow. What this function calculates is irrelevant to the

problem (although it is known as the Fibonacci function, with a time delay added). We want to

speed up using this function by caching its results. The idea is that any time we use the function,

we will store the result, so that the next time we use it with the same argument, we will just

look up the result, rather than re-calculating it.

Write a function fCached(x). You define and maintain a global dictionary that represents the

cache. When your function is called, it looks whether the f’s result for x has been cached yet.

If so, it just returns the result from the cache. Otherwise, it uses f(x) to calculate the result,

stores in the cache that x maps to this result, and returns the result.

Examples: fCached(x) always returns the same thing as f(x).

6. COMP 200 & COMP 130 (20 points total)

Background: You might have celebrated Pi Day on 3/14. Historically, calculating the value of pi

accurately has been a difficult problem. The following diagram illustrates one approach.

http://docs.python.org/library/re.html
http://docs.python.org/library/re.html#re.MatchObject.group

Area of the circle .

Area of the rectangle .

Ratio of circle area to rectangle area

.

If we randomly generate points in the rectangle, some of them will also land in the circle. If we

generate lots of points, we expect the fraction of those points that land in the circle to be

approximately the ratio of the areas, i.e.,

.

Hints: We can generate a random two-dimensional point in the rectangle by randomly

generating two numbers in the range -1 to 1. We can determine if a point is in the circle by

seeing whether it is within distance from the origin, i.e., if √ , or equivalently

 .

Resource link: The random library. You might also want to use the math library, e.g., for

math.pi.

a. (15 points) Write a function approximatePi(numberOfPoints) that takes a

number of points that you will randomly generate. It generates the points and

computes the fraction of those inside the circle, as described above. It returns 4 times

that fraction, i.e., an approximation of .

b. (5 points) Experimentally, how large must numberOfPoints be to get an

approximation that is within 0.01% of the actual value of ? Answer in terms of factors

1

-1
1 -1

http://docs.python.org/library/random.html
http://docs.python.org/library/math.html

of 10 for numberOfPoints, i.e., does numberOfPoints need to be roughly 1, 10,

100, 1000, 10000, etc.?

Note that 0.01% accuracy implies a value between 3.1412785 and 3.141907, and thus at

least the first four digits are correct. We have provided a function

testApproximatePi(numberOfPoints) that will call your function and report

your function’s result and accuracy.

7. COMP 130 only (15 points)

Explain the basic premise by which PCA is used to differentiate between texts of different

authorship in terms of multidimensional clustering. Give a short, concise, yet complete answer.

8. COMP 130 only (35 points)

Refer to the provided file exam2_130.py. It contains code and the directions for four sub-

problems.

